teori termokimia
1.1 Latar belakang
Termokimia adalah cabang ilmu kimia yang mempelajari kalor dalam suatu reaksi kimia. Kalor pada suatu reaksi kimia dalam sistem terbagi atas dua, yaitu kalor yang dapat dilepaskan (eksoterm) dan kalor reaksi yang dapat diserap (endoterm). Jumlah perubahan kalor reaksi sebagai hasil kimia dapat diukur dengan alat yang bernama kalorimeter dimana yang diukur pada alat ini adalah temperaturnya. Prinsip kerja kalorimeter adalah dengan cara mengisolasi kalor dalam sistem agar kalor nya tidak berpindah ke lingkungan (kalornya tetap terjaga).
Aplikasi dari termokimia adalah penggunaan termos air panas, dimana termos air panas selalu menjaga kalor/panas dari sistem agar perpindahan kalor/panas dari sistem ke lingkungan menjadi lambat dan air yang didalam termos menjadi tetap panas.
1.2 Prinsip percobaan
Penentuan tetapan kalorimeter dapat dilakukan dengan mencampurkan air panas dan air dingin lalu mengukur suhunya dengan waktu tertentu. Penentuan kalor reaksi Zn dengan CuSO4 dapat ditentukan dengan mengukur suhu awal CuSO4 lalu mencampurkan Zn ke CuSO4 atau kalorimeter. Suhunya diukur pada selang waktu tertentu. Penentuan kalor pelarutan etanol dan air dilakukan dengan mengukur suhu awal air dan etanol lalu mencampurkannya kedalam kalorimeter. Suhu pencampuran diukur selama beberapa menit dengan selang waktu tertentu. Penentuan kalor penetralan HCl dan NaOH dengan cara mengukur suhu HCl dan NaOH, setelah suhu antara HCl dan NaOH sama, dimasukkan kedalam kalorimeter dan ukur suhu campurannya selama beberapa menit dengan selang waktu tertentu. Reaksi yang terjadi pada percobaan ini adalah :
Zn + CuSO4 → ZnSO4 + Cu
HCl +_ NaOH → NaCl + H2O
1.3 Tujuan percobaan
Tujuan dari percobaan ini adalah untuki mempelajari perubahan energi yang menyertai reaksi kimia.
BAB II
TINJAUAN PUSTAKA
4.1.1 Termokimia dan Kalor reaksi
Termokimia adalah ilmu yang mempelajari hubungan antara energi panas dan energi kimia. Sedangkan energi kimia didefinisikan sebagai energi yang dikandung setiap unsur atau senyawa. Perubahan energi dapat terjadi dalam suatu sistem maupun lingkungan. Sistem dapat berupa gas, uap air dan uap dalam kontak dengan cairan. Secara umum sistem dibagi 3 macam yaitu ( Atkins,1990 ; Brady,1999 ) :
1. Sistem terbuka merupakan sistem yang memungkinkan terjadinya pertukaran energi dan materi ke lingkungan. Contohnya suatu zat dalam gelas kimia.
2. Sistem tertutup merupakan sistem yang memungkinkan terjadinya pertukaran energi tanpa pertukaran materi ke lingkungan. Contohnya sejumlah gas dalam silinder yang dilengkapi penghisap.
3. Sistem terisolasi merupakan sistem yang tidak ada pertukaran energi maupun materi ke lingkungan.
Kalor adalah perpindahan energi termal. Kalor mengalir dari satu bagian ke bagian lain atau dari satu sistem ke sistem lain, karena adanya perbedaan temperatur. Besarnya kalor reaksi bergantung pada ( Alberty dan Daniels, 1992 ) :
1. Jumlah zat yang bereaksi
2. Keadaan fisika
3. Temperatur
4. Tekanan
5. Jenis reaksi (Ptetap atau Vtetap)
Kalor reaksi kalor adalah kalor yang menyertai suatu reaksi dengan koefisien yang paling sederhana. Contoh ( Oxtoby dkk, 2001 ) :
3 H2(g) + N2(g) → 2 NH3(g) ∆H = -92 KJ
Ditinjau dari jenis reaksi, terdapat beberapa jenis reaksi yaitu kalor pembentukan, kalor penguraian, kalor penetralan, kalor reaksi dan kalor pelarutan ( Basri,2002).
4.1.2 Hukum Hess
Menurut hukum Hess, panas yang timbul atau diserap pada suatu reaksi (panas sekali) tidak bergantung pada cara bagaimana reaksi tersebut berlangsung, hanya bergantung pada keadaan awal dan akhir (Oxtoby dkk, 2001)
Termokimia merupakan salah satu kajian khusus dari Termodinamika, yaitu kajian mendalam mengenai hubungan antara kalor dengan bentuk energi lainnya. Dalam termodinamika, kita mempelajarikeadaan sistem, yaitu sifat makroskopis yang dimiliki materi, seperti energi, temperatur, tekanan, dan volume. Keempat sifat tersebut merupakan fungsi keadaan, yaitu sifat materi yang hanya bergantung pada keadaan sistem, tidak memperhitungkan bagaimana cara mencapai keadaan tersebut. Artinya, pada saat keadaan sistem mengalami perubahan, besarnya perubahan hanya bergantung pada kondisi awal dan akhir sistem, tidak bergantung pada cara mencapai keadaan tersebut.
Hukum Termodinamika I disusun berdasarkan konsep hukum kekekalan energi yang menyatakan bahwa energi tidak dapat diciptakan maupun dimusnahkan; energi hanya dapat diubah dari satu bentuk ke bentuk lainnya. Dalam kajian Hukum Termodinamika I, kita akan mempelajari hubungan antara kalor, usaha (kerja), dan perubahan energi dalam (ΔU).
Perubahan energi dalam (ΔU) dapat dinyatakan dalam persamaan ΔU = Uf – Ui, dimana Uf adalah energi dalam setelah mengalami suatu proses dan Ui adalah energi dalam sebelum mengalami suatu proses. Perubahan energi dalam (ΔU) merupakan fungsi keadaan. Energi dalam (U) akan bertambah jika sistem menerima kalor dari lingkungan dan menerima usaha (kerja) dari lingkungan. Sebaliknya, energi dalam (U) akan berkurang jika sistem melepaskan kalor ke lingkungan dan melakukan kerja (usaha) terhadap lingkungan. Dengan demikian, hubungan antara kalor, usaha (kerja), dan perubahan energi dalam (ΔU) dapat dinyatakan dalam persamaan sederhana berikut:
ΔU = Q + W
Perubahan energi dalam (ΔU) adalah penjumlahan dari perpindahan kalor (Q) yang terjadi antar sistem-lingkungan dan kerja (W) yang dilakukan oleh-diberikan kepada sistem.
Semua reaksi kimia dapat menyerap maupun melepaskan energi dalam bentuk panas (kalor). Kalor adalah perpindahan energi termal antara dua materi yang memiliki perbedaan temperatur. Kalor selalu mengalir dari benda panas menuju benda dingin. Termokimia adalah kajian tentang perpindahan kalor yang terjadi dalam reaksi kimia (kalor yang menyertai suatu reaksi kimia).
Aliran kalor yang terjadi dalam reaksi kimia dapat dijelaskan melalui konsep sistem-lingkungan. Sistem adalah bagian spesifik (khusus) yang sedang dipelajari oleh kimiawan. Reaksi kimia yang sedang diujicobakan (reagen-reagen yang sedang dicampurkan) dalam tabung reaksi merupakan sistem. Sementara, lingkungan adalah area di luar sistem, area yang mengelilingi sistem. Dalam hal ini, tabung reaksi, tempat berlangsungnya reaksi kimia, merupakan lingkungan.
Ada tiga jenis sistem. Sistem terbuka, mengizinkan perpindahan massa dan energi dalam bentuk kalor dengan lingkungannya. Sistem tertutup, hanya mengizinkan perpindahan kalor denganlingkungannya, tetapi tidak untuk massa. Sedangkan sistem terisolasi tidak mengizinkan perpindahan massa maupun kalor dengan lingkungannya.
Pembakaran gas hidrogen dengan gas oksigen adalah salah satu contoh reaksi kimia dapat menghasilkan kalor dalam jumlah besar. Reaksi yang terjadi adalah sebagai berikut:
2 H2(g) + O2(g) –> 2 H2O(l) + energi
Dalam reaksi ini, baik produk maupun reaktan merupakan sistem, sedangkan sekeliling reaksi kimia merupakan lingkungan. Oleh karena energi tidak dapat diciptakan maupun dimusnahkan, hilangnya sejumlah energi pada sistem akan ditampung pada lingkungan. Dengan demikian, kalor yang dihasilkan dari reaksi pembakaran ini sesungguhnya merupakan hasil perpindahan kalor dari sistem menujulingkungan. Ini adalah contoh reaksi eksoterm, yaitu reaksi yang melepaskan kalor, reaksi yang memindahkan kalor ke lingkungan.
Penguraian (dekomposisi) senyawa raksa (II) oksida hanya dapat terjadi pada temperatur tinggi. Reaksi yang terjadi adalah sebagai berikut:
energi + 2 HgO(s) –> 2 Hg(l) + O2(g)
Reaksi ini adalah salah satu contoh dari reaksi endoterm, yaitu reaksi yang menyerap (membutuhkan) kalor, reaksi yang memindahkan kalor dari lingkungan ke sistem.
Reaksi eksoterm merupakan reaksi yang memancarkan (melepaskan) kalor saat reaktan berubah menjadi produk. Reaktan memiliki tingkat energi yang lebih tinggi dibandingkan produk, sehingga energi dibebaskan pada perubahan reaktan menjadi produk. Sebaliknya, pada reaksi endoterm terjadi hal yang berlawanan. Pada reaksi endoterm, terjadi penyerapan kalor pada perubahan dari reaktan menjadi produk. Dengan demikian, reaktan memiliki tingkat energi yang lebih rendah dibandingkan produk.
Satuan ΔH adalah joule per mol atau kilojoule per mol. Hubungan kalor reaksi (Q), jumlah mol zat yang bereaksi (n), dan entalpi reaksi (ΔH) dapat dinyatakan dalam persamaan berikut:
ΔH = Q / n
Selain menggunakan metode kalorimeter, entalpi reaksi dapat pula ditentukan melalui beberapa metode lainnya. Salah satu metode yang sering digunakan para kimiawan untuk mempelajari entalpi suatu reaksi kimia adalah melalui kombinasi data-data ΔH°f. Keadaan standar (subskrip °) menunjukkan bahwa pengukuran entalpi dilakukan pada keadaan standar, yaitu pada tekanan 1 atm dan suhu 25°C. Sesuai kesepakatan, ΔH°f unsur bebas bernilai 0, sedangkan ΔH°f senyawa tidak sama dengan nol (ΔH°f unsur maupun senyawa dapat dilihat pada Tabel Termokimia). Kita dapat menghitung entalpi suatu reaksi kimia apabila ΔH°f unsur maupun senyawa yang terlibat dalam reaksi tersebut diberikan. Sebagai contoh, berikut ini diberikan suatu reaksi hipotetis:
a A + b B —————> c C + d D
Reaksi kimia pada dasarnya merupakan peristiwa pemutusan-penggabungan ikatan. Saat reaksi kimia berlangsung, reaktan akan mengalami pemutusan ikatan, menghasilkan atom-atom yang akan bergabung kembali membentuk produk dengan sejumlah ikatan baru. Dengan mengetahui nilai entalpi masing-masing ikatan, kita dapat menghitung entalpi suatu reaksi kimia. Oleh karena pemutusan ikatan kimia selalu membutuhkan sejumlah kalor dan sebaliknya pembentukan ikatan kimia baru selalu disertai dengan pelepasan kalor, maka selisihnya dapat berupa pelepasan (eksoterm) maupun penyerapan (endoterm) kalor.
Jika kalor yang dibutuhkan untuk memutuskan ikatan lebih tinggi dibandingkan kalor yang dilepaskan pada saat pembentukan ikatan, maka reaksi tersebut membutuhkan kalor (endoterm) Jika kalor yang dibutuhkan untuk memutuskan ikatan lebih rendah dibandingkan kalor yang dilepaskan pada saat pembentukan ikatan, maka reaksi tersebut melepaskan kalor (eksoterm).
DAFTAR PUSTAKA
Alberty, R.A dan Daniel, F . 1992 . “ Kimia Fisika “ . Jilid I . Edisi 5 . Penerjemah : Sudja . Erlangga . Jakarta
Atkins, P.W . 1990 . “ Kimia Fisika “ . Jilid I . Edisi 6 . Penerjemah : Kartohadiprojo . Erlangga . Jakarta
Basri, S . 2002 . “ Kamus Lengkap Kimia “ . Rineka Cipta . Jakarta
Brady,
J.C . 1999 . “Kimia Universitas : Asas dan Struktur“ . Jilid I . Edisi 5
. Penerjemah : Sukmanah, Ramiarti, Anas dan Sally . Binarupa Aksara .
Jakarta
Oxtoby, D.W, Gills, H.P dan Nachtrieb, N.H . 2001 .”
Prinsip-prinsip Kimia Modern “ . Jilid II . Edisi 6 . Penerjemah :
Suminar . Erlangga . Jakarta
Tidak ada komentar:
Posting Komentar